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PREFACE

The work reported herein was performed by the School
of Engineering of 01d Dominion University for the Langley
Research Center, NASA, Hampton, Virginia, as the final
phase of NASA Grant NGR #47-003-015. The principal in-
vestigator was Dr. William D. Stanley of 0ODU, and Mr.
Wayne R. Powell served as graduate assistant. This is
the second and final comprehensive report on the grant.

An earlier report entitled "Statistical Analysis of a
Planetary Radar Altimeter Measuring Unit", dated September
1969, was submitted to NASA to describe the first phase

of the grant.

Although this report should be interpreted as a
"final report" for administrative purposes, it is likely
that still another report may be delivered sometime after
the expiration date of the grant. A separate problemn
dealing with the variation of radar return magnitude as a
function of planetary surface specularity and altitude has
been assigned as a master's thesis to the graduate assistart
and will be supervised by the principal investigator. In-
asmuch as this problem was generated during the grant,
suitable copies of the thesis will be delivered to Langley

Research Center after completion of this study.
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The principal investigator would like to acknowledge
the advice and assistance of Mr. W. T.-Bundick, Mr. W. A.
Southall, Mr. T. M. Walsh, and Mr. R. L. Kenimer, all of
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INTRODUCTION

The purpose of this investigation was to explore
the use of certain digital (or discrete) signal processing
techniques for both the simulation and implementation of
planetary Doppler radar altimeter systems. In order to
predict accuracy requirements and the level of performance
expected in remote planetary missions, it is desirable to
employ a considerable amount of simulation in determining
total system requirements. Suitable digital models of
critical measurement processes are valuable in developing
appropriate computer simulations.

With the increasing application of digital hardware
and techniques, it is expected that improvements can be
made on conventional analog systems by replacing some of
the previous analog functions by digital processes. Through-
out this investigation the concept of implementing actual
systems with digital hardware was placed on an equal level
of importance with the goal of developing digital simulation
models.

The main body of this report is divided into three
sections, chosen to correspond to three separate aspects of
the investigation. The first section describes the simula-
tion of Doppler return signals. The Doppler signal models

were obtained by employing a Gaussian random number generation



program and digital filters whose frequency response
acts to provide the proper spectral shape to the simulated
Doppler.

The next section describes the investigation ot
digital phase-locked loop frequency trackers. The first
model considered was centered around a close correspondence
with analog phase-locked loops, thus making it suitable for
computer simulation. In addition, a model more suitable
for direct digital implementation employing a zero-crossing
error detector was investigated.

The last main section of the report describes the in-
vestigation of the Fast Fourier Transform concept for appli-
cation in Doppler signal processing. This powerful concept
could permit the actual real-time spectral analysis of
certain Doppler signals, thus permitting maximum information
regarding the spectrum to be available. The computer simula-
tion of such a system will be described, and typical computer
runs will be shown. Results obtained from performirig certain

statistical evaluations of the data will be discussed.



DOPPLER SIMULATION

Doppler Signal Assumptions

The Doppler shift results in a return signal (echo)
having different spectral properties from the transmitted
signal. If the relative velocity between the radar and
the target were constant, and if the antenna beam were
infinitesimally small, then the spectrum of the return
signal would merely be a simple translated version of the
transmitted signal, and measurement of the Doppler shift
could be reasonably straightforward and accurate. In
practice, however, the spectrum of a Doppler return signal
undergoes a considerable modification, mainly in the form
of spectral dispersion.

The most significant contributing factors to the
spectral modification are as follows: (a) The nonzero
beamwidth of the antenna results in a spreading of the
radiated signal over some area of the planetary surface.
The signal backscattered at each point on the illuminated
area has a statistically random amplitude and phase with
respect to the incident signal. Furthermore, the relative
Doppler shift will be different at different points within
the area because of different relative velocities between
the surface and radar. The antenna beam "integrates" all

the complex components to yield the actual return signal.



(b) Relative acceleration between radar and surface
results in an additional frequency modulation effect
which further modifies the spectrum.

The variation in backscattered signal as a function
of incident angle varies considerably with the nature
of the surface roughness. The spread of the beam on the
surface depends heavily on the orientation of the beam
with respect to the surface and the beamwidth. The
result of these various effects 1s that the Doppler return
is a rather complex phenomena, which can only be treated
in a statistical sense.

The first unclassified treatment of Doppler air-
borne velocity measurements was presented by Berger
(ref. 4). Further work by Berger (refs. 5 and 6) and
Fried (refs. 22 and 23) established many basic zoncepts
that have been widely employed in designing Doppler systems.

The basic assumptions that are widely used in evalua-
ting Doppler errors were discussed by Berger (ref. 4).
Most of these assumptions are concerned with the nature
of the power spectrum. Notable among these assumptions
are: (a) The Doppler spectrum is equivalent to the
spectrum obtained by passing white noise through a band-
pass filter. (b) The probability density function of
the instantaneous frequency has approximately the same

width as the power spectrum of the Doppler signal. Based



on these and similar assumptions, Berger developed ex-
pressions for various error bounds. However, Berger noted
that no rigorous general proof of these postulates had
been found.

The earliest Doppler systems were of the continuocus-
wave (CW) variety. A significant development was the FM
Bessel Sideband Doppler system described by Glegg (ref. 26).
This system is capable of achieving greater immunity from
noise than the CW system. The FM system was later ex-
tended in capability to the measurement of both velocity
and range by Fried (ref. 24).

Regardless of the type of Doppler system employed,
the fundamental operation that must be performed within
the receiver is to measure in a statistical sense some
pertinent characteristic of the power spectrum of the
return signal. The appropriate characteristic could con-
ceivably be the center of the spectrum, the frequency
having peak power, or some otner suitable property.

As a starting point in this investigation, it was
desirable to develop some simple computer programs for
simulating Doppler returns. For the purpose of testing
the phase~lock loop system to be described later, step
and ramp function routines were first written.

Doppler Step and Ramp Simulations

Whenever a transient type waveform such as a step or



ramp is used to excite a system for testing purposes, it
is desirable that the system be in a steady-state condi-
tion initially. Since a step or ramp usually represents
a deviation in frequency from some initial frequency, it
is desirable to develop a routine that manually allows
the operator to switch on the appropriate waveform at a
proper reference time, t=o.

Let wc represent the reference radian center fre-
quency, and let d, represent the cyclic Doppler step
input. The step function of Doppler may be implemented

by the eguations

x(t) = sin(w t+¢) for t<o
(1)
= sin(wct+2wdot+¢) for t>o
where ¢ is an arbitrary phase, and the amplitude of the
sinusoid is ncormalized to unity.
For a ramp input, let d; represent the slope of the
deviation versus time (measured in Hz/sec). The ramp
function of Doppler shift may be realized by the equations
x(t) = sin(wst+¢) for t<o
(2)
= sin(w t+ndi1t?+¢) for t>o

Second-Order Doppler Simulation

The basic concept employed in developing a Doppler

simulation computer program is that such a signal can be



thought of as arising from passing white noise through a
band-pass filter. On the digital computer "white noise"
can be obtained from a random number generator program
with Gaussian amplitude statistics. On the IBM 1130, a
subroutine named GAUSS has the necessary characteristics
to accomplish the desired purpose.

The spectrum of the random number generator was
modified to represent approximate Doppler spectra by
means of various digital filters. The use of digital
filters in various signal processing applications has
been receiving considerable attention in recent years
(refs. 13, 17, 18, 20, 27, 28, 30, 31, 32, 33, 37, 38,
40, 42, 43, 44, 45, 47, 52, 53, 54, 58, 59, 60, 67, 69,
72, 75). The theoretical basis for digital filter design
is the relationship between continuous and discrete linear
systems. The z-transform was developed as a powerful
analytical tool for describing discrete systems, and it
has been used extensively in sampled-data system analysis
and design (refs. 34, 35, 36, 41, 46, 55, 73). Many of
the concepts developed in the literature on sampled-data
systems are directly applicable to digital filter design.

The particular approach used in developing the Doppler
simulation filters was the bilinear transformation method.
This method can be made to yield good correlation between

the behavior of the digital filter and a correspounding



analog filter, thus permitting a large part of the design
process to be performed in the analog domain.

The first digital filter employed was a second-
order band-pass filter having a variable bandwidth (or Q)
and a variable center frequency. If a flat noise spectrum
excites such a filter, then the output spectrum must have
the same characteristic as the filter bandpass shape.

By varying the center frequency, the effectof a change

in velocity may be represented, and by changing the Q, the
effects of narrower or wider Doppler returns may be simu-
lated.

For convenience, the center frequency of the analog
transfer function is normalized to w=1l. In terms of a
reference analog complex frequency p, the transfer function
Hg(p) is given by

Hy(p) = p/Qg
P +p/Qgtl

(3)
where Qd is defined as

Qg = Center Frequency
3dB Bandwidth (4)

This response is identical with that of a simple series or
parallel resonant circuit.

The analog filter may be mapped to the digital domain
by means of the transformation

p = Cd(l—z—l)
1+z-! (5)



where Cq is a mapping constant and z is the z-transform
variable. Let s represent the final Laplace transform
variable of the digital filter. Assume that the samples
of the time signal are spaced T seconds apart. Then z

and s are related by

z = ¢ST _ ¢s/fg (6)

where f_ is the sampling frequency (1/T).
Let s=jw represent the imaginary axis of the s-plane and
let p=j) represent the imaginary axis of the p-plane. These

axes are related by

A= Cq tanwT = Cy tannf (7)
2 fs

Let f4y represent the center frequency of che Doppler signal.
Since this frequency must correspond to A=1l, the constant
Cq 1s

Cd = cotmfg (8)

fS

The z-~domain transfer function may be represented

as

Hq(2z) = ago(l-z7?%) (9)
l+bd12— 1+bdzz 2




where

1+CdT+Cd)Qd
2
de = 2-2Cd
1+Cd2+cd/Qd (11)
— 2
bd2 = 1+Cd "Cd/Qd

I+C47+C3/Qg (12)

Let r(n) represent the output of the random number generator,
and let x(n) represent the output of the Doppler filter.

The algorithm for generating x(n) is

x(n) = ado[r(n)-r(n—Z)] - bdlx(n—l)—bdzx(n~2) (13)

The spectrum generated by this filter possesses
geometric symmetry about the center frequency. On a linear
scale, the rolloff above band-center is more gradual than
the rolloff below band-center. This might be representative
of certain, types of skewed Doppler spectra. The result is
that the mean frequency is somewhat higher than the peak-
amplitude frequency. On the other hand, for a very narrow-
band case, corresponding to a high Q, the response is very
close to being arithmetically symmetrical.

Computer Simulation

A second-order Doppler simulation subroutine in FORTRAN

IV is included in the Fast Fourier Transform Program shown

10



in Appendix B. It is the portion of the program with
the title SUBROUTINE KAY (NPPC,NTOT,Q). It is ne&essary
(and often convenient) to modify the notation when writing
such a program. Extensive computer runs were made in
‘order to obtain data for use in other parts of this in-
vestigation. Many of these runs were plotted on an IBM
1627 XY Plotter. Some typical data obtained in this
fashion are shown in Figures 13 through 22.

The parameter Q4 defined in (4) is of interest only
as a means of determining the relative bandwidth of
the Doppler signal. A more convenient parameter for
characterizing the graphical displays is a parameter BW

that will be defined as

BW 3dB Bandwidth x 100%

Center Frequency

(14)

1 x 100%
Q4

It will be observed that the figures are labeled with the

appropriate value of BW in each case.
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DIGITAL FREQUENCY TRACKER

General Discussion

An investigation of a digital phase-locked loop
frequency tracker model and its digital computer simu-
lation will be described. The reasons for this investi-
gation were twofold: (a) In order to study the dynamic
behavior of typical planetary altimeters under simulated
conditions, it is desirable to have a suitable comnuter
model whose characteristics can be programmed to cor-
respond, within reasonable bounds, to the typical type of
frequency trackers employed in actual altimeters.

(b) With the increasing availability of large-scale
integrated digital circuits, it seems feasible that a
digital phase-locked frequency tracker could be developed
to have advantages over existing analog units. Although
it may not be the best approach to merely attempt to
Ycopy"® the corresponding functions of the analog unit in
constructing a digital hardware unit, it should add clarity
and design assistance to work initially wicth the concept
of employing a close similarity between the functions of
each unit. Certainly for the simulation purpose, this
approach would be the appropriate one.

In general, Doppler shifts may be either positive or

12



negative representing, respectively, relative velocities
either in the direction of or away from the radar system.
In noncoherent systems it is necessary to employ two
channels with local carriers phased 90° with respect to
each other, in order to detect the sense of the Doppler
shift. In order to make the digital simulation as simple
as possible, only a single channel tracker was simulated,
with the direction of the shift assumed to be known.
Presumably, this assumption should not limit the accuracy
of any measurement since the determination of the direction
of the Doppler shift is a different problem from the
measurement of the Doppler spectrum jitself.

Analog Phase-Locked Loop

There have been several variations in the actual
implementation and arrangement of the basic phase-locked
loop frequency tracker. However, aside from the single
channel assumption previously discussed, all analog units
observed seem to essentially reduce to the basic phase-
locked loop discriminator system widely used in communi-
cations systems. The references on phase-~lock loops are
quite extensive, and no attempt will be made here to
document the literature on the subject. The primary source
used in obtaining data in developing the model was the
JPL report of Tausworthe (ref. 71).

The basic analog model considered in this investigation

13



is shown in block form in Fig. la. The input signal x(t)
is multiplied by the VCO output v(t), and the low-
frequency portion of this signal is applied to the loop
filter. The output of the loop filter a(t) represents an
averaged estimate of the Doppler shift, which is simul-
taneously applied to the input of the VCO. By means of
the feedback mechanism, the frequency of the VCO can be
made to track very closely the statistical "average" of
the input Doppler signal. This shift can be actually
measured via the bias a(t) existing at the input to the
VCo.

Although the analysis of this action is widely known,
a brief review will be presented here in order to provide
a basis for the discussion to follow. Assume that the

input x(t) is the normalized function

x(t) = /2 sinfuw t+8 (t)] (15)
where fctwc/Zw is the cyclic center frequency of the loop
and ellt) is- the input phase variation. The phase variation

is related to the input Doppler variation d(t) by

el(t) = ZwJ[;(t)dt (16)
Agsume that the feedback signal v(t) is of the normalized
form

vit) = V2 cos[wct+62(t)] (17)

14



where ez(t) is the feedback phase variation. Let d(t)

represent the output Doppler estimate. Then ez(t) and

2Jd(t)dt (18)

The ideal output of the multiplier e, (t) would be

a(t) are related by

6, (£)

the product of x(t) and v{(t) as given by

e (t) = sinl® (t)-6,(t)]
(19)
+ sin[2mct+61(t)+92(t)]

In all treatments of the phase-locked loop observed in the
literature, the assumption is made that the second harmonic
term in (19) can be eliminated due to either or both of the
following two reasons: (a) Practical multipliers are
frequency limited, and if the frequency is high enough, the
multiplier will not respond to this second-harmonic term.
(b) The bandwidth of the loop is so low compared with the
second harmonic of the carrier frequency that this component
will have negligible transmission through the filter.

While both of these assumptions are apparently valid
in high frequency phase-locked loops designed for standard
FM demodulation, in the case of low-frequency wide~band
Doppler trackers, one or both assumptions may not be ap-
propriate. This point will be discussed more fully in the

digital simulation development later.

15



Continuing with the original development and con-

sidering only the low freguency term, this error e(t) is
e(t) = 8in(8, (t)-8,(t)]

The loop filter then "smoothes" the error e(t) toc yield an
average estimate a(t) of the Doppler shift.

A widely employed linearized model of the phase-
locked loop may be obtained by assuming that the error
61-0, is sufficiently small so that the sine term in (20)
may be approximated by its argument. With this assumption
an s-plane model for the system can be developed in the

form of Fig. 1lb. The following terms are defined:

4{t) = input Doppler cyclic frequency
D(s) = L{d(t)] = Laplace transform of d(t)
d(t) = estimate of Doppler cyclic frequency
D(s) = L[a(t)l

e(t) = Phase Error = 01-6, in linear model

E(s) = Lle(t)]

Hg{s) = transfer function of loop filter

It is sometimes convenient to replace the block dia-
gram of Fig. 1lb by the externally-equivalent unity feedback
form of Fig. lc. This model is very useful for determining
input-output relationships, but it must be used with
caution when computations inside the loop are made. For

example, later in this report, an analysis will be made of

16
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the phase error. If the unit feedback form is employed,
it is necessary to define the phase error at the mid-
point between the 271/s and He(s) blocks.

Second-Order Analog Loop

The most widely used analog loop filter appears to
be the first-order transfer function given by
Ho(s) = Kg'(1+T,s)
1+T s (21)
However, in the analysis of such a loop, the approxima-
tion that T; >> T, is usually made so that the filter
behaves approximately like a single lead coupled with a
pure integration. In view of the eventual goal of digital
implementation, it seems logical that the correspondence
of pure integration (pure summation) should be considered,

and hence the actual loop filter that will be assumed in

this analysis is of the form

He(s) = Ko(1+sr) (22)
s

The closed loop transfer function G(s) is given by

G(s) = 2mKg(1l+sT)
s"'+21TKoTs+21rK0 (23)

Observe that the effective gain constant is actually 27
times the actual loop filter gain constant. For convenience,

an effective gain constant K will be defined as

17



K = 21rKo (24)

With this definition the transfer function is
G(s) = _K(l+sT)
B +KT1s+K (25)
Suppose it is desired that the guadratic in the

denominator of G(s) have a damping ratio ¢ and a natural
radian frequency wy. It can be readily shown that the
effective gain constant and numerator tine constant required

are given by

K = woz (26)
T = 2%
W, (27)

Although the linear model is not particularly ac-
curate for relatively large errors (approaching w/2 radians),
it is, nonetheless, interesting and meaningful for approxi-
mate purposes to determine the nature of the phase error
predicted from the linear model as a function of simplified
input signais. With this goal in mind the transfer function
relating the phase error E(s) to the Doppler shift D(s) is
given by

E(s) = 27s = 27S
D(s) s‘+KTs+w;7 s‘+2cwos+wo‘ (28)

Assume that the input Doppler d{t] is a step frequency

shift of magnitude d,(in H2). The time domain error eg(t)

18



for an underdamped loop is given by

e (t) = ad e” 59t sine vI-T7t (29)

o)

oM

where fo=mo/2n. The maximum phase error Eg, for the step
input occurs at a time Tg,. The relationships can be

shown to be

-1
onsm = Ccos ¢ (30)
/1=¢°
-1
E_=4d4. ~tcos 't (31)
sm 0 e—e——
5 T

For the case of a critically damped loop (z=1l), the

error is

_- -w. .t
es(t) = 2ndote fo)

(32)
For this case, Tsm and Esm are
WoTgm = 1 (33)
Bsm = Eg€~1 (34)
£
The steady-state error for a step input is zero; i.e.
eg(®) =0 (35)

Next assume that the Doppler input undergoes a ramp

of input frequency shift. (This would correspond to a

19



constant non-zero acceleration.) The input is given by
d(t) = 4;t (36)

where d1 is measured in Hz/sec=sz. The tiMe domain error

e, (t) for the underdamped loop is given by

e (t) = 4, g-5tWot

fhe maximum phase error Erm for the ramp input occurs at

a time T, . For the underdamped loop, the relationships are

woTrm = X (38)
Ve
= 4, [l+g ST} (39)
Erm 5;%;7 ¢ V=

For the case of the critically damped loop and

ramp input. the error in phase is

-wat
e (t) = i tl-e "O7(1+ugt)] (40)
2nE 2
o
In this case the maximum error occurs at t=» and is identical
with the steady-state error that will be discussed in the
next paragraph.
The steady-state phase error for the ramp frequency

input is a constant and is given by

e, (=) =
o 21F 2 (41)

20



The steady-state frequency errors for both the step and
ramp frequency inputs are zero in the ideal linear models.
In effect the loop gain product in the system satisfies
the type 2 criterion of control theory, thus providing
zero steady-state errors between output frequency esti-
mates and input Doppler shifts for both step and ramp
frequency inputs.

Digital Phase Lock Loop

A discrete phase-lock concept for implementing a
frequency tracker with digital techniques will be dis-
cussed in this section. The system has been successfully
simulated on a digital computer and could be constructed
with existing digital circuitry. It was designed around
a close comparison between each analog operation and a
corresponding digital operation, thus making it convenient
for computer simulation of an analog unit. Whether or
not this approach is the ideal one for actually designing
a direct digital unit for implementation is an open
question, as will be discussed later.

The system under consideration is shown in Fig. 2.
As is true with any digital unit, the system operates
with discrete samples which are obtained by sampling the
input Doppler signal at intervals of T seconds apart.

The sampling rate must be chosen to be somewhat higher

than twice the highest frequency to be considered. In the

21



noise-free case, the input signal is assumed to be of

the discrete form
x{(n) = V2 sin{nw T+6, (n)] (42)

Assume that the feedback signal from the VCO v(n) is of

the form
v(n) = V2 cos [nw _T+8, (n) ] (43)

Each successive set of samples of x(n) and v(n) are
multiplied together in a digital arithmetic unit: The
output pulse train e; (n) can be determined as

ei1(n) = sin(6,(n)~6,(n)]
(44)
+ sin(2nw T+6,(n)+6, (n)]
For reasons that will be explained more fully later, it
was found desirable to employ a digital band-rejection
filter to remove the spurious second harmonic component
before the signal is applied to the loop filter. It will
be seen that the effect of the band-rejection filter on
the amplitude of the error is negligible, but there is a
small phase shift. However, for the moment, this additional
phase term will be neglected, and the error signal e(n) at
the input to the loop filter will be assumed to be

e(n) = sin{d (n)-8,(n)]
(45)

22



The digital loop filter is a first-order transfer
function designed by means of the bilinear transformation
applied to the analog prototype, thus making it behave
very closely with the analog unit.

In order to develop a digital filter by the bilinear
transformation technique, an analog prototype transfer

function is first assumed. In this case it is

‘Hg (p) = K, (1+pT) (46)
p
where the complex variable p denotes a prototype reference
variable. The bilinear transformation reads
p=C (1-271)
e
1+z-? (47)
where C, is a mapping constant and z is the z-transform
variable. The value z~! denotes a one-unit (T) time delay.

Substitution of (47) into (46) yields for the z-

transfer function

He(z) = A(l-a,z7})

I-z=1 (48)
where
A = Ko (1+C,T) (49)
Ce
a, = CeT-l (50)
ce F1
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Let d(n)represent the sampled version of the output
Doppler estimate, and let e(n) represent the input to
the loop filter. The transfer function of (48) is

generated by the algorithm

d(n) = d(n-1) + A(x(n)-a x(n-1)]

(51)
Because of the fact that a, is a number very close to
unity, as observed from (50), it was discovered that ac-
cumulated error could be minimized in the process of (51)
by rewriting in the form
d(n) = d(n-1) + Afx(n)-x(n-1)+bx (n-1)] (52)
where
b = 2 (53)

I+C_1
e

The digital VCO is a numerical process in which the
Doppler estimate a(n) {8 " "integrated" by a zero-order summation
and used to modulate the argument of a cosine function.

The output of the VCO was expressed by equation (43). The

angle 6, (n) is given by
8,(n) = 8,(n-1) + 27Td(n) (54)
The transfer function of the VCO is then given by

02(z) = 27T (55)
D(z) 1-2=1
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Let p=jA represent the imaginary axis of the proto-
type variable, and let s=jw represent the imaginary axis
of the final s-plane function. From the bilinear trans-
formation of (47), it can be seen that

A = CtanuT = C_tanmf (56)

e
2 fs

where f_ is the sampling frequency given by

f =1

S 7 (57)
Assume that a particﬁlar prototype radian reference fre-
quency Ar is to correspond to a particular cyclic reference

frequency fr in the actual system. The constant Ce is

then
Ce = Arcot ﬂ% (58)
£
S
If the sampling rate is chosen to be sufficiently high
compared to the frequency range of main concern (order of
ten times or so), the mapping constant is given by approxi-
mately
Ce = A fS (59)
m fr
If one-to-one correspondence between analog and digital
filters is desired (Ar = 2ﬂfr), then
Co = 2fs = Z(EE)Q: = 2af, (60)
fc
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where

o fa”

The quantity o is a convenient parameter giving the
ratio of sampling frequency to center frequency of the
loop. It can also be interpreted as the number of points
per cycle measured at the center frequency. Finally,
since real-time operation is not sought in the simuiation,

f. can be normalized to unity, yielding

Ce = 20

for fo = 1. 1In subsequent discussions, all frequencies
and time constants will often be selected with the as-
sumption of the normalized center frequency of unity.

Notch Filter

In the last section, mention was made of employing
a notch filter at the output of the multiplier in order to
remove the component at the second-harmonic of the center
frequency of the loop. It appears that this procedure is
more desirable in a digital unit than in certain classical
types of analog multipliers because of the "ideal" nature
of the multiplication in the digital multiplier. Further-
more, a relatively low freqguency wide-band Doppler fre-
quency tracker would require a loop filter having a band-
width too wide to adequately suppress the second harmonic

term.
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Let'Hn(p) represent the prototype transfer function
of a second-order notch filter. If the notch frequency

is normalized to unity, this function is

# (p) = p2+1

p2+p_+1 (63)
Qn
where
Qn = Center Freguency (64)

2 dB Notch Bandwidth

The transfer function (63) may be mapped to the

discrete domain by the transformation

p=C (1-z"')
nyyz-T (65)

The imaginary axes are related by

A= Cntangg = Cntanﬂg
2 af (66)

where o was defined in equation (61l). Since the notch
is required to be at twice the carrier frequency, f=2f_

and A=1, resulting in

C_ = cot 27 (67)
a

Inserting (65) into (63) and subsequent manipulation yields

_ -1 ~2
H, (2) = apg + ap;27 + ap,Z (68)

- 1 -l
bpe + bnlz + bnzz
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where

ano = l+Cp? (69)
ap = 2(1-Cy*) (70)
an, = l+cp? (71)
bpo = 1+Ch%+Ch/Qn (72)
by, = 2(1-Cp*) (73)
bp. = 14Cp*-C,/Qq (74)

Let el(n) represent the error signal entering the notch
filter, and let e(n) represent the output. The algorithm

for generating e(n) is given hvy

e(n) 1 lanpe (n)+ap e (n-1l)+a, e (n-2))

no
(75)

1
bno[bnle(n—l)+bn2e(n—2)]

Optimization of Notch Bandwidth

The purpose of the notch filter is to remove the high
frequency component of the signal at the output of the
multiplier as previously discussed. Ideally, the notch
filter should have negligible effect on the low-frequency
unsmoothed Doppler estimate, since it must also pass
through the notch filter. This condition could be met if
the undesirable high frequency component were a single fre-

quency located at twice the carrier frequency. In this
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case the notch could ﬁé located at exactly this frequency,
and the Q could be made to be as high as practical co-
efficient accuracy would permit, thus resulting in a
very narrow band-rejection notch having virtually no
effect away from the notch.

Unfortunately, the high-frequency component does
not exist solely at a single frequency as can be seen
most easily from the original analog representation in
equation (19). Letting eh(t) represent the high-frequency

signal, it is

e, (t) = sin[2wct+61(t)+62(t)]
(76)
The instantaneous cyclic frequency f; (t) of this signal
is
£fi(t) = 2fc+f1(t)+f2(t) (77)
where
fl(t) = instantaneous input frequency
= 1 del(t)
2m ~4dt (78)
fz(t) = instantaneous feedback frequency
= 1 dea(t) (79)

2m Tdt

Although there will certainly be a reasonable,
fraction of the time when f1 and f2 are not equal, e.g.

during sudden changes of the Doppler shift while the =
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loop is attempting to track the signal,; from the point
of view of steady~-state behavior, the loop will always
eventually reach zero frequency error for a sinusoidal
input signal of a constant frequency. Considering this
important limiting case, assume that the input Doppler

is a single frequency £y in which case

The instantaneous frequency of ep(t) is now
fi = 2f +2f4

Observe that since the Doppler shift may be either posi-
tive or negative, the range of the steady-state frequency

signal is
fc'Zfdififc+2fd

The conclusions of the preceding development may now
be stated. 'The notch cannot be made to be extremely sharp
because the frequency of the undesired signal can vary
over the range given in (82), and an exceptionally sharp
notch would fail to provide adequate attenuation for a
signal with any reasonable value of Doppler shift. In
fact, as the Doppler shift increases, the width of the
notch must be increased (lower Q) in order to accommodate

the_objective. However, as the width of the notch is
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increased, the effect on the low-frequency operation of
the loop is more pronounced. Thus, there is a tradeoff
between the attenuation effectiveness of the filter and
the amount of undesired parasitic effect on the loop,
which becomes more difficult as the Doppler shift in-
creases.

It is possible to determine an optimum Q for the
notch for a given range of Doppler shifts, if certain
criteria are specified. An analysis of the steady-state
response of the notch filter in the vicinity of the notch

shows that for a given fd' the magnitude transfer ratio

(MTR) of the notch is given by

MTR] = 2Q,fg
notch f; (83)
filter

The magnitude transfer ratio of the loop filter itself in

the vicinity of the notch is given by

MTR] = KgV1l+w?2T?2
loop =
filter

KoVIF (2mR t2£2= KVI+(2m) 2(28) Z(2E,+2Eq) 2

27 (27 E) - wo?
(2m) 2 (2f+2£Q)

(84)
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The approximation in (84) is valid since the expression
under the radical is normally much larger than one. The
total magnitude transfer ratio between multiplier output

and loop filter output is

MTR]
total = 2Q fg x 2for = 410,f,fq (85)
Te fo

Let Kj represent the ratio of the peak high fre-
quency component to the Doppler shift fd' This value
is

(86)

From this equation, the value of Q, may be determined to
yield a specified Kgq with the other parameters known. It
should be pointed out that Q, cannot be decreased in-
definitely, since to do so would cause some effect in the
low-frequency loop passband, particularly in regard to
additional phase shift for the data. The relationship of
(86) was checked in several computer runs and was found
to be quite accurate.

Computer Simulation

The digital frequency tracker previously described
was simulated on an IBM 1130. Although several modifica-

tions on the program were considered, a representative
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FORTRAN IV program of the essential loop function is
shown in Appendix A. As usual it was necessary to modify
the mathematical notation somewhat when constructing this
program. Extensive runs were made with different types
of inputs and different parameters for the loop.

Although it was obviously impossible to check all
of the results with actual phase-locked loop frequency
trackers, several representative runs were compared with
the responses predicted from the linear model. One would
not expect to achieve exact correlation between the simu-
lated system and the linear model, since the simulated
model is nonlinear. However, for relatively small fre-
quency deviations, there should be close correspondence.
This property was verified since the simulation did show
close correlation for fairly small deviations.

Zero-Crossing Discriminator

A particular form of digital phase-~locked loop that
was considered early in this investigation was one em-~
ploying zero-crossings detectors as a means for providing
the error signal for the loop. The basic open-loop zero-
crossing discriminator has been analyzed in the literature
(refs. 21, 56).

The closed-loop system considered is shown in Fig. 3.

The input zero-crossing detector provides a pulse each
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time the Doppler signal chaﬁges sign. This pulse train
is applied to the positive input of an accumulator,
which records the number of pulses received. At the
same time a feedback pulse train is applied to the nega-
tive input of the accumulator, which subtracts from the
total. The output of the accumulator at any time is
equal to the difference between the number of zero-
crossings obtained from the input Doppler signal and the
number of zero-croséings of the feedback signal. The
digital loop filter is chosen to smooth this error signal
and provide an estimate of the Doppler.

A system of this type was actually simulated on the
IBM 1130, and several runs were made. The results ap-
peared to be promising, but the design was not finalized.
It appeared that some further study was needed to determine
the appropriate type of loop filter to employ. The loop
filter considered for the classical type of tracker was
not adequate., Because of a change in the direction of
this investigation, this system was never fully developed.
It is felt that this system could indeed warrant further

study.
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FAST FOURIER TRANSFORM PROCESSING

Introduction.

The Fast-Fourier Transform (FFT) is a rapid compu-
tational method for evaluating the Fourier coefficients
of a finite length record of a discrete signal. This |
technique appears to have considerable promise for
processing signals in which the spectral content is of
primary importance. The process may be applied to a
normal computer by programming it to perform this function,
or a special FFT computer may be built to specifically
perform spectral analysis. The increasing advancement
in micro-integrated digital circuits has resulted in the
possibility of implementing certain special FFT processors
for on-board spacecraft signal analysis within the normal
size and weight constraints of such missions.

The purpose of this investigation was to assess the
potential of the FFT technique for processing Doppler return
signals in a planetary radar altimeter. Measurement of
certain properties of the spectrum is required in order to
estimate the velocity and, in some cases, the altitude of
the spacecraft, depending on the exact type of radar system
employed (refs. 2, 4, 5, 6, 22, 23, 24, 26, 31, 51, 61, 65,
70, 74).

Most Doppler altimeter systems in use today employ
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an analog phase-locked loop frequency tracker of the
type considered in an earlier part of this report.
Along with the concept of implementing the phase-locked
loop with digital techniques investigated earlier, the
use of the FFT concept as a different type of digital
processing mechanism was investigated.

Discrete Fourier Transform

The Fast Fourier Transform (FFT) is a high-speed
algorithm for evaluating the Discrete Fourier Transform
(DFT). In this section the DFT will be developed as an
approximation to the finite Fourier series. This ap-
proach is slightly different to most of the developments
appearing in the literature, but it is felt that it
offers certain advantages in achieving understanding of
the process.

Consider a signal x(t) defined over the finite range
O<t<Tp. This interval may represent one or more cycles
of a periodic signal, or it may represent simply a segment
of a random process having infinite limits. It is well-
known in the theory of boundary value problems that such
a function may be expanded in a Fourier series as long as
it is reasonably "well-behaved." The evaluation of the
Fourier series consists in determining a set of coefficients
defining the amplitudes of the spectral components of the

frequency representation of x(t). Let F represent the
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fundamental non~zero frequency contained in the spectrum.

The quantities T_ and F are related by

p

F=_1
Tp (87)
Furthermore, the frequencies in the spectrum are spaced
a distance F between components.

Let X(mF) represent the complex values of the
spectral coefficients of x(t). The finite exponential

Fourier serie: pair can then be expressed as

T

P .
X(mF) = 1 x (32T g¢
B (88)
o
x(t) = I X(mF)el2mmFt (89)

- 00

An important property of the summation (or inverse
transform) given by (89) is that the resulting time function
is periodic with period Tp regardless of whether or not the
original function is periodic. This can be seen by first

noting that

ejZNk = 1 for k an integer (90)
Utilizing (90) it is readily shown that in (89)

x(t+Tp) = x(t) (91)
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The first step in achieving a complete digital
implementation of (88) and (89) is to define a suitable
numerical approximation to the integral of (88). Although
many numerical procedures are theoretically possible,
the technigue that has received almost all the recent
attention has been a zero-order approximation to the
integration. However, instead of actually defining it
as a numerical approximation, the operation under considera-

tion has been defined as the Discrete Fourier Transform

(DFT) .

Assume that a finite lenyth record of a signal
x{(t) is to be transformed. For convenience, let t=0 be
the starting point, and assume that the record consists
of N samples of x(t) defined at equally-spaced intervals
separated by T seconds apart. Thus the input signal can
be represented as x(nT), 0<n<N-1. Let T _ represent the

P

entire length of the record.

Tp = NT (92)

The differential dt can be approximated by the
sampling interval time 7. Thus the integral of (88) may
be approximated by the summation

1 .
x(nT)éjznmnFT

N

X{(mF) = (93)

o™ |

1
N

The summation expressed by (93) can be shown to yield a
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periodic signal in frequency with "period" Fp where

F_=1
P T
This can be seen by observing that
X(mF+Fp) = X(mF) (95)
Observe in (93) that
FT = 1
N
Substitution of (96) in (93) yields
N-1 Ao
X(mF) = 1 I x(nT)e” J&I0A (97)
N 0 N

In view of the deductions of the past few paragraphs,
it can be stated that the DFT of a finite length discrete
time signal is a periodic spectrum defined only at discrete
frequencies. The spacing between spectral components is
the reciprocal of the record length as given by (87), and
the "period" of the spectrum is the reciprocal of the
spacing between time samples as shown by (94). The latter
relationship is related to the minimum sampling-rate con-
cept inherent in sampled signal theory. The frequency Fp
is equivalent to the sampling rate. The maximum unambiguous

frequency is called the Nyquist frequency F, and is given

by
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Fy =

F 1
£ 7T

It can be shown that the spectrum between F, and Fp is
ambiguous and is dependent on the spectrum between dc
and Fp.

As a matter of convenience the symbols F and T in
the arguments of X(mF) and x(nT) will be omitted and
understood. The complex value W will be defined as

W= ¢g"J2T
N
The Discrete Fouriex Transform may now be stated as
N-1

T x(n)wnn
0

X(m) =1
N

It should now be observed that the inverse transform

given by (89) appears to require summation over both

positive and negative frequencies; whereas, the transform

has been computed only for positive frequencies. However,

it can be shown that summation of the ambiguous portion

of the spectrum from N/2 to N is mathematically equivalent

to summing over the negative frequency range. The inverse

time function is then given by

N-1 _
x(n) = I X(m)W
0

nm
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In many applications, only the transformation from
time to frequency is desired. It is immaterial whether
the 1/N factor is placed with the time-to-frequency trans-
formation of (100) or the frequency-to~time transformation
of (101). For convenience, the quantities will be re-
defined so that this factor is grouped with the latter
function. Thus, the final definition of the DFT pair

will be stated as

N-1

X(m) = I x(n)wh? (102)
0
N-1

x(n) =1 & X(m)w "o (103)
N o

The remainder of the report will concentrate on computa-
tion and interpretation of (102), since for the Doppler
application under consideration, this is the function of
primary concern.

Fast Fourier Transform

The Fast Fourier Transform (FFT) is a high-speed
algorithm for evaluating the Discrete Fourier Transform
(DFT) or its inverse. There is an extensive volume on
recent literature appearing on the subject. Many of the
sources encountered in this investigation are listed at
the end of this report (refs. 1, 7, 8, 9, 11, 12, 14, 15,

le¢, 19, 25, 27, 29, 52, 57, 62, 63, 64, 66, 68). Most of
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the current interest on the subject is based on the
computational algorithm developed by Cooley and Tukey
(ref. 19).

A brief discussion of the computational technique
will be discussed. Observing equation (102), it can
be seen that the direct computation of the spectrum

from m=0 to m=N can be represented by the matrix

equation
_ _ _ ST -
X(0) wow® .. .w0 X(0)
X(1) wowr .. .wN-1 X(1)
) = | . : . (104)
| x(8-1) woON-1, . p(N-1)? X (N~1)

Let X represent the vector defining the N spectral
components, X the vector defining the N time samples, and
[W] the N x N matrix. The array of (104) can be expressed

as
X = [Wix (105)

If a direct application of (104) is employed to
compute the spectrum, it is necessary only to compute the
spectrum from m=0 to m=N/2-1. This is true since the

spectrum in the range from m=N/2 to N-1 is not arbitrary
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and can be deduced from the spectrum in the former range.
However, the FFT technigque to be considered shortly re-
quires that the fully expanded form of (104) be used in
expressing the algorithm.

With the preceding points in mind, it can be seen
that a total of N?/2 complex multiplication and N2%/2
complex additions are required to compute the spectrum
directly from (104) in the range of interest. For the
sake of discussion the value N? will be assumed as a
reference when specifying the approximate number of
complex arithmetic computations (including both multipli-
cation and addition) for computing the spectrum of an N
point signal without the use of the FFT algorithm.

The approach of Cooley and Tukey can be thought of as
equivalent to factoring the matrix [W] into a number of
separate matrices, each having a large number of zero
entries (sparse matrices), and chosen in a manner to
reduce the number of computations by a considerable amount.
The most efficient factorization results when N is selected
as an integer multiple of 2. From here on, this re-

striction will be made. Let

N = 2T

or

=
i

log N
2

With this assumption the number of matrix factors is L.
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Thus, [W] can be represented as

W] =(W 1(W 1...[Wg]

Each of the individual matrices is an N x N matrix
having only two non-zero elements on each row. One of
the elements is unity, and the other is W raised to some
power in the range between 0 and N.

There is one minor problem in the natural operation
of the basic algorithm. If the input vector x contains
its elements in their natural order, the output spectral
components are "scrambled" or shuffled out of natural
order upon computation. Let ié represent this scrambled

spectrum vector. The operation can be written as

Xg = [wll[wzl...[wL]E
The order in which (108) is performed is as follows:
First, the vector X is multiplied by [W_ ] to yield a new
vector. Next, this vector is multiplied by [WL_l] to
yield another vector. This process is repeated until the
Ly matrix multiplication, in which the scrambled vector
Xs is produced. As previously pointed out, each row of
a given matrix contains the constant unity and W raised

to an integral power, while all other entries on that row

are zero. The values of WK may be stored in memory, so
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there is not necessarily any computation involved in
obtaining these gquantities. (This point will be dis-
cussed more fully later.)

The multiplication of a particular row of a matrix
by a given vector involves only one complex multipli-
cation and one complex addition. Since there are N rows,
N complex multiplications and N complex additions are
required to transform any vector to the next vector.
However, there are L=log2N such operations involved.

Thus, there are a total of N logZN complex multiplications
and N logZN complex additions. By taking advantage of
certain symmetries, the number of computations may be
reduced by one-half or more if the basic algorithm is
further modified. For the sake of discussion, the value

N logzN will be assumed as a reference for specifying the
approximate number of complex arithmetic computations
(including both multiplication and addition) for computing
the spectrum of an N point signal with the FFT algorithm.

A comparison of the direct definition of the DFT
with the FFT for a signal with 1024 points shows that the
number of computations required with the DFT would be of
the order of 10°%, while for the FFT the number of compu-
tations would be of the order of 10%. The computation
time in this case would be about 1% for the FFT as compared

with the straight DFT definition.

45



The vector Xs as computed from (108) must be

"unscrambled" in order to yield the spectral components

in their natural order. This can be achieved by an algorithm

in which the storage addresses of all the components are
listed in binary. The component of the unscrambled
vector X at a particular storage location address can be
found by going to the address corresponding to the bil-
reversed value of the reference location and reading the
value there.

The algorithm given by (108) is only one of several
different techniques. An alternate approach having es-
sentially identical computation time is to first sort
the input to yield a scrambled time signal §S. In this
case the corresponding matrix factorization yields an

output in natural order according to the eguation
X = [U1][U2]°"[UL]XS

Altheugh (108) and (109) both require scrambling
they have the advantage of "computation in place." This
term refers to the fact that as the progressive sequence
of operations to yield the components of an intermediate
vector take place, a given new component may be stored in
the same location as the previous corresponding component.
On the other hand it is possible to organize the compu-

tations so that both a natural input and a natural output
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order are utilized. The only disadvantage to this

approach is that "computations in place" are not

possible. Thus, the amount

of internal storage re-

quired is increased, but the logic is still straight-

forward.

Previously, it was shown that the complex values

wk

are required in the computation. Using the defini-

tion of W given in (99), the value of wk is given by

k _ .~32mk
W = € -

cos21k -jsin2nk

N N

Note that W is periodic with period N. Furthermore, the

values of WX in any range of k could be deduced from the

values of either sine or cosine in the first quadrant by

means of trigonometric identities. Thus, in theory it

would be possible to deduce
from the N/4 sine or cosine
(or even less if desired).

be desirable to employ more

avoid more complex logic in

all values of wk required
values in the first quadrant
However, in practice it may
values than this in order to

calling the appropriate values.

The values of WK required may be stored in the memory of

the FPT processor for recall when needed. If memory is

extremely limited, but processing speed is not critical,

it may even be desirable to

compute some of the trig-

onometric values as they are reguired.
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The exact organization of the logic and memory
is a problem that must be considered in the light of
the overall system requirements and hardware limitations
in terms of size, weight, and the present state of the
art. Obviously, if the processing for a given system
can be performed on the ground, it is not necessary to
be so particular about optimizing the logical design
of the FFT processor, In fact, for ground processing
a general purpose computer may be readily programmed to
provide FFT data analysis.

Practical Considerations

Successful employment of the FFT requires an under-
standing of some of the properties and limitations of the
technique. Unless some of the important fine points of
this approach are understood, there is a strong pos-
sibility that erroneous interpretations and invalid
answers can result.

First of all, it is impossible to obtain a true
Fourier representation in the strictest sense unless the
nature of the time signal is known for all time. Obviously,
this is completely impossible for any meaningful signal
in which measurement is desired, and the best that can be
done is to determine a Fourier representation that is
valid over a reasonable segment of time. This suggests

the concept that repeated Fourier analyses can be made on
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successive records of the signal with the intent that
each analysis should represent the spectrum of that
segment. The longer that a given record is made, the
finer is the resolution between successive frequencies

as suggested by equation (87). However, as the record
length is increased, either the number of sample points
must be increased for equal spacing between time samples,
or the spacing between time sample must be increased

if the number of points is fixed. If the latter pos-
sibility is chosen, the highest frequency at which the
spectrum can be calculated is reduced as the record
length is increased as can be seen by equation (98).
Thus, there is a tradeoff between the resolution between
successive frequencies and the maximum frequency at which
the spectrum is desired.

Actually, if it is expected that the spectrum is
going to change quite rapidly, it is desirable to keep
the record length relatively short if the resolution re-
quirements can be met. Otherwise sudden changes in the
information being sought will go undetected, which could
be disastrous in some situations, e.g. Doppler radar
velocity measurements with rapid acceleration. In general,
most of the classical established concepts of spectral
analysis hold for the FFT method as long as the appropriate

special conditions are considered. A classic source of

49



information on spectral analysis is the work by Blackman
and Tukey (ref. 10).

The determination of the optimum record length,
sampling rate, etc., is a very complex problem which must
be carefully studied in view of the nature of the spectrum
and the desired accuracy requirements. As a starting
point the relationship between the frequency resolution
F, the Nyquist frequency F,, and the number of samples

N should be observed.

FN = 2Fn

From this equation, any one of the three guantities may
be determined if the other two are known. Once the three
guantities are specified, the record length Tp and sample

time T are determined from the equations

T =1

P F

T = 1
2Fn

The discussion of the preceding paragraph seems
deceptively simple. However, there are subtle difficulties
that may arise that could obscure the wvalidity of the
measurement. In order to best explain the phenomena in-

volved, refer to Fig. 4. The time signal is assumed to
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be a pure sinusoid running from -« to +« as suggested
in (a). The ideal spectrum is a pair of lines as shown
in (b). The waveform that is actually transformed is
the gated sinusoid shown in (c¢). The spectrum is the
convolution of the lines of (b) and the spectrum of a
pulse-type waveform, resulting in the modified spectrum
shown in (d). Furthermore, since the time signal is
sampled as shown in (e), the spectrum must be periodic
as shown in (f). Finally, since the representation is
in fact a periodic time domain representation with N
terms or a period Tp in the time domain as shown in (g),
the spectrum is defined only at discrete frequencies as
shown in (h). Although the distortions arising with the
sinusoid are perhaps exaggerated as compared with many
waveforms, the fact remains that care must be taken in
processing a signal with this approach.

Bergland (ref. 8) considered several difficulties
that may arise from incorrect use and misunderstanding
of the FFT. The two most significant difficulties pertinent

to this investigation are aliasing and leakage.

The aliasing effect results when the sampling rate

is too low. Considering Fig. 4f, if the sampling rate is
less than twice the highest frequency in the spectrum,
some portion of the translated spectrum will overlap the

original spectrum, thus making it impossible to recover
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or measure the actual spectrum. Before attempting to
use the FFT concept, it is necessary to carefully study
the qualitative characteristics of the given signal to
make sure that the sampling rate is sufficiently high.
It is often desirable to pass the signal through a
bandlimiting filter before transforming it in order to
minimize aliasing effects.

The leakage effect results from the fact that the

signal in the time domain can be looked at only for a
finite time. The term "window" is used to denote the
short duration pulse-type signal which can be thought of
as turning on and off the observed record. Since the
resulting spectrum is the convolution of the desired
spectrum and the spectrum of the window function, there
is a subsequent spreading or "leakage" of the spectrum

as can be observed in Fig. 4d. Although the square-pulse
is the simplest type of window, it can result in significant
leakage if the record length is quite short. The leakage
problem can be reduced by choosing an optimum window
function in the time domain so that the sidelobe energy
is minimized. This problem was considered in detail by
Blackman and Tukey (ref. 10) and more recently by others

in conjunction with the FFT method.
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FFT Simulation Programs

Two digital computer programs have been written for
computing the FFT. These may be thought of as simulating
the approximate logic organization in typical FFT signal
processors, although no attempt was made to "optimize"
this organization. The programs were written in FORTRAN IV
for use on the IBM 1130 in the School of Engineering at
0l1d Dominion University. Both programs require that the
input signal have a number of points that is an integer
power of two. However, the particular power of two is
arbitrary and can be selected in a given case. Unfortu-
nately, storage limitations of the 1130 computer resulted
in a maximum array size of 256 for the data presented in
this report. It is felt that by very careful attention
to storage and computation, this value could probably be
doubled on the given machine. For the purpose of this
investigation, it was not deemed necessary to concentrate
any more effort in this direction since the study of
spectral analysis of a 256 point array might lead to some
interesting data regarding the effectiveness of analysis
with a relatively small array.

The first program was designed around an "in-place"
algorithm with the input arranged in natural order. This
means that the output data must be "unscrambled" by find-

ing the bit-reversed addresses of the output components.
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Apparently, this is straightforward with logic circuits
operating in binary. However, it was necessary to
develop a subroutine to perform this operation in
FORTRAN. The subroutine is entitled INREV(K,NLOG).

The trigonometric functions were computed and stored

at the beginning of the program.

The complete first program, along with the Doppler
subroutine, the bit-reversal subroutine, and various
plotting subroutines, is shown in Appendix B. Note that
a considerable amount of this program is devoted to various
scaling and plotting instructions to provide suitable
output displays. The FFT computational algorithm occurs
between the statement IN-PLACE FFT ALGORITHM REQUJRING
BIT-REVERSAL and the statement END OF IN-PLACE FFT
ALGORITHM,

The second program was designed around an algorithm
permitting natural order for both input and output data,
thus eliminating the need for either "scrambling" or
"unscrambling" of the data. However, it was necessary to
increase the amount of internal storage since "computation
in place" is not possible with this algorithm. In order
to keep the storage for this program to be comparable with
that of the first program, it was decided to compute the
trigonometric values as they are needed rather than store

them. By paying careful attention to the logic, it can
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be determined that there are rather long segments of
the program in which the same trigonometric functions
are repeatedly used. Consegquently, the actual computa-
tion time required to determine the trigonometric
functions as they are needed is approximately twice the
time required to compute them once and store them.

The FFT algorithm portion of the second program
is shown in Appendix C. The remainder of the program is
essentially the same as the program of Appendix B with the
exceptions that the subroutine INREV(K,NLOG) is omitted
and the DIMENSION card will replace WR and WI with XR
and XI. The instructions of Appendix C replace the FFT
algorithm over the limits described in a preceding para-
graph. Since both programs produce identical results,
it will not be necessary in subsequent discussions to
refer to either program specifically.

Computation of the FFT yields the complex spectrum
defined by (104). A more pertinent result for applica-

tion in Doppler measurement is the power spectrum denoted

by S(m). The power spectrum definition used is given by
S(m) = |x(m)]? (114)

The operation of (114) is easily implemented by taking
the sum of the sqguares of the real and imaginary parts of

X(m) .
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Statistical Evaluation of the Spectrum

A discussion of some of the important properties of
Doppler spectra was presented in and earlier portion of
this report. From the discussion there, it is evident
that for any realizable system, there is a certain amount
of statistical averaging inherent in the measurement of
any Doppler spectrum. Traditional frequency trackers
accomplish this goal, as best as can be done, by locking
in on some pertinent characteristic of the spectrum and
tracking it.

With the application of the FFT, there is a complete
"picture" of the spectrum available, and subsequent
processing of the data can center around this fact.
Although there is no unique strategy that can be proposed
at this point, one can make a rather strong argument to
support the assumption that some sort of statistical evalu-
ation of the spectrum would be most appropriate. Unless
some particular correlation between the shape of the return
spectrum and the surface-to-spacecraft geometry can be

programmed, the statistical mean of the spectrum seems to

be the most pertinent characteristic to identify. Thus,
all the components of the return signal can be weighted,
and the adverse effect of some single strong erroneous
component can be minimized.

The assumption will be made that the power spectrum
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S(m) satisfies, in some sense, a form of statistical
representation of the return signal as far as frequency
is concerned. This assumption certainly appears to be
compatible with that of Berger (ref. 4). It is first
necessary to normalize S(m) so that it qualifies as a
legitimate probablity density function. The normalizing
quantity S is computed from the summation

N/2-1

S = z S (m)
T 0

A normalized power spectrum is then computed from

So(m) = S (m)

S

Let m represent the location of the mean component
of the spectrum. From basic statistical theory it is

_ N/2-1
m = g mSo(m)

The mean frequency in the spectrum f is then given by
f = mF

Another quantity of interest might be the standard

integer deviation op. It is determined from the equation

N/2-1
0.2 = £  (m-m)2S (m)
0 o

The frequency standard deviation ogf is then given by
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Of = OnF (120)

Possible FFT Processors

Two schemes will be proposed for utilizing the FFT
processor in the measurement of Doppler return signals.
The first scheme is an open-loop measurement whose es-
sential features are shown in Fig. 5. It is assumed that
the RF signal is first translated through one or more ap-
propriate IF channels so that the signal appearing at the
input to the processor has a frequency range sufficiently
low to permit real-time digital processing.

A record of the signal is first obtained by sampling
and storing until the required array size is obtained.
From this stage the data is fed to the FFT processor. If
storage space is at a premium, it may be necessary to
alternately perform recording and computation. During a
recording period the output display would simply reflect
the results of the previous computation period, and no
new results could be permitted during this period. During
the computation period, the array obtained during the re-
cording period would be processed to yield updated values.
With this approach, careful attention would have to be paid
to the overall system behavior expected in order to avoid
possible loss of information due to the "blind" periods

and lag. The appropriate estimates are obtained from a
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statistical computation of the spectrum as previously
discussed.
If more storage space is permitted, it is possible
to simultaneously record and compute. In this manner,
all of the potentially available samples are utilized;
whereas, if separate record and compute periods are used,
half of the available samples will never be used. How-
ever, with either approach, there is always a delay
involved before a given array can be processed. This
is true regardless of the type of system employed, since
any bandlimited measurement cannot be made instantaneously.
The second scheme that will be proposed is a closed-
loop measurement whose basic form is shown in Fig. 6.
This figure should be interpreted merely as an explana-
tion guide, since an actual system employing such an
approach might require quadrature channels or more complex
interaction with the remainder of the system. This system
has the advantage that it is always performing a spectrum
analysis of a.low-pass signal, since the desirable part
of the error spectrum at the output of the multiplier is
low-pass in nature. (It may be necessary to employ a band-
rejection filter here as was considered in an earlier
section in conjunction with the digital phase~locked loop.)
Consequently, a more efficient FFT algorithm can probably

be implemented.
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The estimates at the output of the statistical
analyzer are used to bias a VCO which mixes with the
input samples. Thus, the superior closed-loop operation
of traditional analog frequency trackers could con-
ceivably be applied to the FFT processor.

Results of Simulation

The FFT program previously described was used to
study certain aspects of the open-loop measurement scheme
suggested in the previous section. A basic statistical
analysis routine was used in the FFT program to determine
the mean and standard deviation. The time and frequency
functions for certain cases were plotted with the IBM
1627 Plotter as shown in Figures 7 through 22. For plot-
ting purposes, the power spectrum in each case was
normalized so that the maximum value is unity. The per-
centage bandwidth (BW) as defined in equation (14) was
printed on the time plot, and the computed mean value was
also printed on the frequency plot.

It will be observed that on some of the plots, values
for BW and MEAN have been typed over the values originally
printed. The reason for this is that the first instructions
to the plotter were made to print the results in fixed-
point arithmetic. Due to roundoff in printing these
guantities on the time plots and the subsequent desire to

print more accurate results on the freguency plots, it was
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later decided to take values from the printouts and type
more accurate values on the plots. In case there is a
misunderstanding of these points, the actual data plotted
is correct; only the original labels in some cases were
misleading due to roundoff not taken into consideration
in programming only the lettering to the plotter. This
discrepancy was amended during the plotting so that some
of the curves were labeled by the plotter as desired.

In view of the fact that the simulation was not
performed in any real-time sense, but simply with a set
of relative parameters that could represent any appro-
priate scale, it seemed desirable to employ a normalized
scale that was not associated with any particular time

or frequency units. The terms Time Integer and Frequency

Integer seemed to be most logical. A given unit on the
scale represents a different sample point. The data taken
was based on N=256, and, thus, the time integer scale
represents the 256 points obtained in a given record. To
enhance the presentation, the plotter was instructed to
extrapolate lines between successive points.

On the frequency integer scale, a given unit corresponds
to a particular multiple of the fundamental frequency F.
Since the spectrum is ambiguous above N/2, only 128 samples
are actually shown in each plot. If any given values for

the time scale were specified, it would be a simple matter
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to compute the appropriate frequency values. As long as
the normalized scales are employed, the correspondence
between a given period and a given freguency may be
determined in integer form. Let Nt=number of time sample
points corresponding to some reference period, and let
Ne=number of freguency integer location corresponding to
the time integer period. It can be shown that, in general,

N, is given by

£

£ (121)
For the 256 point system, this is

Nf = 256
N, (122)

The results of assuming pure sinusoidal returns are
shown in Figures 7 through 12. (Notice that higher fre-
quency time plots do not always look like sinusoids due
to the type of extrapolation employed on the plotter.)
Letting Nt=period integer as previously discussed, these
curves represent the following values for Ny le, 8, 4,
20, 10, 5. The corresponding expected values for Nf are
as follows: 16, 32, 64, 12.8, 25.6, 51.2. Observe that
the expected values for the first three cases occur exactly

at integer frequency values. Also, since a square window

function was employed, the zero crossings of the spectrum

62



of the window are at integer displacements from the main
lobe. The resulting spectra thus appear to be single
line spectra as observed in Figures 7, 8, and 9. Looking
at it from another point of view, these three sinusoids
in the time domains each have been chosen to have an
integer number of cycles. Whenever this situation exists,
the spectrum will appear to be a single line, even though
there is actually some leakage as previously noted.

Neither of the three sinusoids of Figures 10, 11,
and 12 have an integer number of cycles in the time domain
interval, and their corresponding frequency values do not
occur at the proper integer values as previously calculated.
Thus, the leakage effect can be readily observed from the
figures. This leakage could be reduced by choosing an
appropriate window function. The effect of the leakage
on the mean frequency measurements is to introduce slight
errors as can be observed from the data.

Typical signals obtained from the Doppler simulation
programs and their corresponding spectra are shown in
Figures 13 through 22. The signals of Figures 13 through
17 were generated with 8 points per cycle measured at the
center of the Doppler spectra. This is equivalent to
sampling at 4 times the Nyquist rate at band-center. The
"correct" mean frequency integer for this case is 32. The

actual computed means vary from 35.52 at 20% bandwidth to
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32.41 at 1% bandwidth. The higher trend in these values

is expected due to the skewed nature of the band-pass
filter used to generate the Doppler. Thus, it is

probably not strictly correct to refer to'the mean fre-
guency integer as being 32. Rather, the program is
apparently computing a more correct mean frequency integer.
The value of 32 simply corresponds to the so-called center
frequency of the resonant curve.

The signals of Figures 18 through 22 were generated
with 4 points per cycle measured at the center of the
spectra. This is eguivalent to sampling at twice the
Nyquist rate at band-center. In this case, the center
frequency integer is 64. The actual computed means vary
from 64.18 at 20% bandwidth to 64.39 at 2% bandwidth.

Some of the trends here are in the opposite sense from
what was originally expected. In fact all of the runs
yield very close correspondence between predicted and
computed values.

The reason for this phenomena is due to the warping
behavior of the bilinear transformation at half the Nyquist
frequency. The tangent curve, providing a relationship
between analog and digital frequency curves, is sufficiently
curved in this frequency range to almost cancel the effects
of the original skewed spectra. Thus, the actual spectra
are very close to being arithmetically symmetrical, and
the additional area at larger bandwidths tends to improve

the symmetry in some cases.
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SUMMARY AND SUGGESTED STUDIES

Summarx

Investigations have been made concerning both the
digital simulation of Doppler analog altimeter measure-
ment systems and the possible digital implementation of
on-board systems. Simulated Doppler spectra were generated
on the computer and used in subsequent measurement studies.
The simulation and possible implementation of digital
phase-locked loop frequency trackers was first investigated.
This was followed by a study of the possible use of the
Fast Fourier Transform method for real-time altimeter
signal processing. Various conclusions and comments
pertinent to these individual investigations have been
made at appropriate places in this report.

As is true with many investigations, there are often
more new questions raised than there are o0ld gquestions
answered. In the remainder of this report, an attempt
will be made to pose certain questions that were generated,
but were not pursued in depth due to the limited scope
of the overall investigation. It is felt that each topic
is probably worthy of further study.

Further Doppler Simulation

All the programs used in the Doppler simulation were

based on the second-order analog filter function described
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in the report. It i sugcested that more study be made
to develop prcocgrams ihat would simulate a more general
situation than was possible with the functions used.

Early in this study, some special band-pass transfer
functions having approximate Gaussian frequency response
were considered for use 1n representing certain types
of spectra. These functions were previously developed
by the principal investigator in conjunction with an
industrial investigation. Due to lack of time, these
functions were never applied to the present study. An
entirely different approach to the generation of Gaussian
shaped spectra was developed by Matthews (ref. 45).

The development of a more general Doppler simulation
program should be aimed at establishing a better cor-
relation of the spectral components with the geometric
relationship of the spacecraft to the planetary surface.

More will be said about this point later.

Digital Erequency Tracker

Initial investigations of the digital freguency
tracker containing the zero-crossing detector showed
definite promise, but it was not pursued in depth. The
largest single difficulty was due to the abruptness of
the discrete error signal coupled with the fact that only
a first-order loop filter was employed. Further studies

could be made relative to determining a higher-order loop
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filter to optimally process the error signal. It is

also guite possible that some of the newer estimation
techniques, such as Kalman filtering, might have potential
application to this problem.

FFT Processing

The FFT method has been initially explored for po-
tential application in Doppler systems, but there is much
yet to be answered before a practical implementation can
be achieved. There are questions regarding such things
as the minimum size of an array needed, the optimum record
length for a given type of measurement and the optimum
sampling rate. The performance of the system in the
presence of background noise should be studied. A study
of the particular statistical method described in the
report, and possible alternate methods could be made.
Comparison of open-loop and closed-loop FFT methods would
be desirable.

Before any specific FFT altimeter system is imple-
mented, it is extremely desirable that an overall compari-
son be made between the frequency tracker concept and the
FFT concept. This study should take into consideration
such factors as the relative accuracy, speed of response,
behavior under worst-case conditions, cost, and amount
of hardware required. Although there are certain clear

advantages to the FFT concept in terms of the total
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information on the spectrum provided, there may be
some difficulties that are not clear at this point.

Walsh Transform Processing

There has been increasing interest recently in the
application of Walsh Functions in communications signal
analysis (ref. 39). The Walsh Functions are a set of
orthogonal functions composed only of square-wave seg-
ments. They are particularly convenient for digital
implementation since they may be thought of as alternate
segments of 1's and 0's in a binary sense. A given
function possessing "reasonable” behavior can be expanded
in a Walsh series in much the same way that a function is
expanded in a Fourier series. It appears that a Walsh
expansion can be readily implemented with a special-
purpose digital processor.

In order for the Walsh functions to show promise in
Doppler radar altimeter signal processing, it is necessary
that certain suitable properties of the Walsh spectrum be
directly related to the appropriate properties of an
equivalent Fourier spectrum in which the Doppler informa-
tion is imbedded. There are definite computational re-
lationships between a Walsh spectrum and a Fourier spectrum,
but it is not clear whether or not the additional effort
would reduce the overall effort or not. It is definitely

felt that such an investigation is needed.
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Correlation of Surface Geometry with Spectrum

One of the most significant sources of error in
classical Doppler measurements is the uncertainty of the
velocity components in the case of a broad spectrum. On
the other hand, when the FFT method is employed, a total
picture of the spectrum is obtained. It would seem that
the most optimum approach for an FFT system would be to
use this total information as much as possible.

Assume that an ensemble of spacecraft-to-surface
geometrical configurations expected in a given case is
available. TIf a suitable backscatter model of the planet
is employed, certain approximate spectral return shapes
can be predicted. Certain key properties of the various
spectra can be stored in memory. When a given actual
spectrum is measured it can then be related to the
"standard" spectra available. By finding the one most
closely approximating the measured spectrum, certain ad-
ditional information regarding the measurement could be
deduced. A more accurate measurement might be possible
with this approach. A study of this concept should be
coupled with the study seeking more general simulation

programs for Doppler signals previously discussed.
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Appendix A

Digital Frequency Tracker Program

PAGE b
// JoB T

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0009 0009 0000

V2 MO6 ACTUAL 8K CONFIG 8K

// FOR

##SINGLE CHANNEL DOPPLER FREQUENCY TRACKER SIMULATION
#LIST SOURCE PROGRAM

*#1O0CS(CARDs 1132 PRINTERYKEYBOARD)

#IOCS(TYPEWRITER)

#*EXTENDED PRECISION
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PAGE 2 SINGLE CHANNEL DOPPLER FREQUENCY TRACKER SIMULATION

[aXaXaXaXal

77 WRETE(1078)
78 FORMAT{! TURN SWITCH 3 OFF AND PROCEED WITH INPUTS')
WRITE(1+112)
112 FORMAT(' SWITCH 1 ON TO SHIFT AND SWITCH 2 ON TO DELETE PRINT OUT!
2)
WRITE(10201)
201 FORMAT(' SWITCH 3 ON TO ENTER NEW DATAs SWITCH 4 ON FOR RAMP')
WRITE(19202)
202 FORMAT (' SWITCH 5 ON TO PAUSE FOR SWITCH SETTING')
WRITE(1+120)
RCON=SLOPE OF RAMP DOPPLER SHIFT
120 FORMAT (' INPUT RCON IN F1240 FORMAT')
READ(6911)RCON
G1=GAIN CONSTANT OF LOOP FILTER
WRITE(19113)
113 FORMAT(' INPUT Gl IN F1240 FORMAT')

READ(6+111G)
TCON=TIME CONSTANT OF LOOP FILTER
WRITE(10114)
114 FORMAT (' INPUT TCON IN F12¢0 FORMAT!')
READ(6921)TCON

ALPHASNUMBER OF POINTS PER CYCLE AT CENTER FREQUENCY
WRITE(19115)
115 FORMAT (' INPUT ALPHA IN Fl12¢0 FORMAT!)
READ(6911)ALPHA
WRITE(19e116!
SHIFT=FREQUENCY SHIFT FOR DOPPLER STEP
116 FORMAT (' INPUT SHIFT IN F1l2¢0 FORMAT!)
READ(6s11ISHIFT
WRITE(19110)
OBR=Q OF NOTCH FILTER
118 FORMAT (' INPUT OBR IN Fl1l2¢0 FORMAT?!)
READ(6+11)08R
11 FORMAT(F1240)
WRITE(391117G1oTCONIALPHA»SHIFTsOBRSRCON
111 FORMATI(! Glm' 4F12e5¢5X e ' TCONS!' gFL12¢595X 0 ALPHA=Y gF124595X9'SHIFT=?
19F12e595X0" OBR ='9F12e502Xs'RCON=sFTe4)
ASSUME CENTER FREQUENCY OF LOOP IS F=le.
"TIME=TIME BASED ON PRECEDING ASSUMPTION
FREQ=FILTER ESTIMATE OF DOPPLER SHIFT
DOPPHeNORMAL IZED PHASE OF INPUT=ACTUAL PHASE/2%P1
DOPLR=INPUT DOPPLER SIGNAL
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PAGE 3 SINGLE CHANNEL DOPPLER FREQUENCY TRACKER SIMULATION

C VCOPH=NORMAL IZED INTEGRATED PHASE OF ESTIMATE

C ERROR=QUTPUT OF PHASE DETECTOR

C ERBRJ®ERROR SIGNAL AFTER PASSING THROUGH NOTCH FILTER

C PHDIFF=NORMALIZED PHASE DIFFERENCE BETWEEN INPUT AND FEEDBACK
WRITE(3910)

10 FORMAT(! TIME FREQ DOPPH DOPLR

1 vCOPH veouT ERROR ERBRJ PHDIFF ')
Pl=36141593

HEGl%(1le+2e #*ALPHA®*TCON)/ (2 #ALPHA)
Cu2e/{let2e*ALPHA®TCON)
DELT=]1+/ALPHA
B=COS(2#PI/ALPHA}/SIN(24#PI/ALPHA)
BNZ=l.+Bu%2,
BNl=2e#(1le=B%R2,)
BN2=BN2Z
BDZ=BNZ+B/0BR
8D1=8N1
BD2=BNZ~-B/0BR
T=Ce
THETN=Qe
DOPPH=0e0
VCOUT=1e
22040
FREQ=0,0
VCOPH=Qe
ERR1=0,0
ERR2=0,0
ERB1=0Q040
ERB2=0 40
Fl=Q,
SHIFF=1,

90 CALL DATSW(5¢M)
GO TO (82+2) oM

82 PAUSE

2 CALL DATSWI(3,L)
GO TO (77+12) L

12 CALL DATSW(1lyJ)}
GO TO (495) 9y

4 CALL DATSW(&4eN)
GO TO (1329s3)sN

13 SHIFT=(RCON/2s) %2

3 SHIFF=le+SHIFT
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PAGE 4 SINGLE CHANNEL DOPPLER FREQUENCY TRACKER SIMULATION

5 DOPPH=DOPPH+SHIFF*DELT
DOPLR=SIN{2e#PI#(DOPPH=IFIX(DOPPH)))
ERROR=2 ¢ #*DOPLR*VCOUT
ENsBNZ#ERROR+BN1*ERR1+BN2*ERR2
ED=BD1*ERB1+BDR*ERB2
ERBRJ= (EN=ED) /8D2
FREQ=H* (ERBRJ=ERB1+C#ERB1)+F]

CALL DATSW(2sK)
TPQ=DOPPH=VCOPH
GO TO (1009200) 9K
200 WRITE(396)2ZsFREQsDOPPHIDOPLRVCOPHIVCOUTH»ERRORSERBRJTPQ
6 FORMAT(1H B(Flle5s2X)e4XsFlle5)
100 ERRZ2=ERR1
ERR1=ERROR
ERB2=ERB1
ERB1=ERBRJ
FlsFREQ
THETN=THETN+FREQ*DELT
VCOPH=T+THETN
VCOUT=COS(2e#P# (VCOPH=IFIX(VCOPH)))
TeT+DELT
GO TO (3009400)+J
300 Z=Z+DELT
400 CONTINUE
GO T0 90
END

FEATURES SUPPORTED
EXTENDED PRECISION
10CS

CORE REQUIREMENTS FOR
COMMON QO VARIABLES 132 PROGRAM gse

END OF COMPILATION

82



Appendix B

Fagt Fourier Transform Program with
. In-Place Algorithm
PAGE 1
// JOB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0003 0003 0000

V2 MO7 ACTUAL 8K CONFIG 8K

// FOR
#ONE WORD INTEGERS
L IST SOURCE - PROGRAM ]
FUNCTION INREV{(KsNLOG)
C THIS FUNCTION 1S USED TO FIND A BIT=REVERSED NUMBER
L1A=K/2
LlsK=2#L 1A
IFINLOG=1)61¢61¢52
52 L2A=LL1A/2
L2=L1A=2%2A
IF(NLOG=2)62062953
53 L3A=L2A/2
L3=L2A=-2#L3A
IF(NLOG~3)63163+54
54 L4AmL3A/2
LamL3A=2#L4A
IFINLOG~4)64964355
55 LS5A={4A/2
LSl 4A=28L DA
IFINLOG>5) 689865956
56 L6A=LSA/2
LE6E=LS5A=2%#6A
IF(NLOG=6)66966957
57 LTA=L6AZ2
LT=L6A=2#LTA
IF(NLOG=7)67+67958
58 L8A=LTA/2
LB8= TA=2#L8A
IF(NLOG=8)68968959
59 L9A=LBA/?2
LIl BA=2%#LZA
IF{NLOG=9)69969+40
60 L10A=L9A/2
L10=L9A=2%_10A
IF(NLOG=101709T70+99
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99 PAUSE

61 INREVsL]1
GO TO 80

62 INREV=2#[1+L2
GO TO 80

53 INREV=G#L1+2%#L2+L3
GO 7O 80

64 INREV=B8#L1+4%L2+2%0L3+0L4

GO TO 80

65 INREV=16%L1+8#L2+4%#L3+2%L4+L5

GO 1y 80

66 INREV=32#L1+16%L2+B8%#L3+4% 44+2%L5+L6

GO TO 80

67 INREVSO4RL]1+32%L2+16RL3+BRLL+4HLE+2*LE6+LT

GO TO 80

68 INREV=128#¥L1+64%L2+32#L3+16*#L4+8HL5+4HL6+2% 7+ 8

GO TO 80

69 INREV=256%L1+128%L2+¢64%L3+32HL 4+ 16%L5+BHLO6+4*LT+2%8+L9

GO TC 80

70 INREV=S12%L1+256%L2+128*#L3+64® L 4+32%[5+16%*L6+8¥LT+4*L8+2%L9+L 10

80 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR. INREV
COMMON v VARIABLES

END OF COMPILATION
// DUP

#STORE WS UA INREV
CART 1D 0003 Db ADDK 2E70

38 PROGRAM 708

OB CNT 0029
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// JOB

LOG DRIVE CART SPEC CART AVAIL
0000 0003 0003

vz MO7 ACTUAL 8K CONFIG 8K

// FCR
#LIST SOURCE PROGRAM

PHY DRIVE
0000

#*ONE WORD INTEGERS

201

200

203

202

204

210

337

SUBROUTINE DOP(BW)

CALL SCALF(4023491e90e904)
CALL FGRID(O#0e96850316e916)
CALL FGRID(Os0asTe75916e916)
CALL FGRID(290e97475002505)
CALL FGRID(140e97e7592e2595)
A=32,

DO 200 I=1s8

IA=A

CALL FCHAR(A=B8a96e394l9el11904)
WRITE(79201)1A

FORMAT (13)

A=A+32,

CONTINUE

C==140

B=6e¢75

DO 202 J=195

CALL FCHAR(=25¢9Bselosels0e)
WRITE(7+203)C

FORMAT (F4el)

C=C+45

B=B+45

CALL FCHAR{ G4 e99¢759a2902904)
WRITE(T79204)

FORMAT ('DOPPLER RETURN?!')

CALL FCHAR(128¢95699e2962904)
WRITE(7+210)

FORMAT ('TIME INTEGER!)

CALL FCHAR{(94¢199¢259415941549040)
WRITE(79337)BW

FORMAT (' (BW="'9FT74292X9 '*PERCENT) "}
CALL FPLOT(3290e098025)
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PAGE

FEATUR
ONE W

CORE R
COMMO

END O
// DUP

*STORE
CART 1

// FOR
#LIST

2

RETURN
END

ES SUPPORTED
ORD INTEGERS

EQUIREMENTS FOR DOP
N 0 VARIABLES 12

F COMPILATION

WS UA DoP
D 0003 D& ADDR 2E99 DB

SOURCE PROGRAM

- #ONE WORD INTEGERS

206
205

208
207

209

SUBROUTINE POW

CALL FPLOT(+190409+2400)
CALL SCALF(e0468924904900)
CALL FGRID(190s30e942096)
CALL FGRID(O90e90s98s916)
AA=16,

DO 205 I=148

IAA=AA

PROGRAM

CNT 0012

CALL FCHAR(AA'A.!‘.l’.l!-l'OO)

WRITE(7+206)1AA

FORMAT(13)

AAsAA+16.

CC=0,

DO 207 I=1+6

CALL FCHAR(=10e9CCrelsel904)
DD=sCC+401

WRITE(7»208)DD

FORMAT (F3.1)

CC=CC+e2

CALL FCHAR(32s31e53020e240s)
WRITE{7+209)

FORMAT ('POWER SPECTRUM!)
CALL FCHAR(S56e3=03502402100)
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PAGE 3
WRITE(79211)

211 FORMAT('FREQUENCY INTEGER!')

RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR POW
COMMON 0 VARIABLES

END OF COMPILATION
// DUP

*#STORE wS UA  POW
CART ID 0003 08 ADDR 2EAB

12 PROGRAM

DB CNT
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/7 JO8B

LOG DRIVE CART SPEC CART AVAIL
0000 0003 0003

vz M07 ACTUAL 8K CONFIG 8K

/7/ FOR
*_[ST SOURCE PROGRAM
*ONE WORD INTEGERS
SUBROUTINE KAY{NPPCINTOT »Q)
C GENERATES DOPPLER SIGNAL
REAL N1sN2sN3
COMMON XR{2561sX1(256)
N1=040
N2=040
N3=0e0
XR1=040
XR2=040
AAA=3,14159/NPPC
A=COS({AAA)/SINIAAA)
AZ=(A/Q)/(le+{A/Q)+A%RR2)

PHY DRIVE
0] ¢]7¢

Ble(2e=24%A%R2)/{1e+(A/Q)+A%XR2)
B2=(1le=(A/Q)+A%%2 ) /(1a+A/Q+A**2)

1vy=33
M=Qe0
703 CALL GAUSS(IYsle0eQ0erVAL}
N3=VAL
XR3=AZ%(N3=N1)=Bl*XR2=-8B2#*XR1
N1=N2
N2=aN3
XR1=XR2
XR2=XR3
M=M+]
IF(M=15e%Q)7039703+704
704 XR{1l)=xR1
XR{2)=XR2
X1(21=0e0
XI(1)=0e0
1x=31
DO705N=3eNTOT
CALL GAUSS({IX91e090e0QsVAL)}
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N3=VAL

XR(N)=AZ*(N3=N1)=Bl*XR(N=1)=B2#*XR(N=2)

XI{N)=0eO
N1=N2
N2=N3

705 CONTINUE
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR KAY
COMMON 1024 VARIABLES

END OF COMPILATION
// DUP

#STORE wS UA  KAY
CART 1D 0003 DB ADDR 2EBA

40 PROGRAM

DB CNT
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PAGE b
/7 JOB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0003 0003 Vo00

V2 MO7 ACTUAL 8K CONFIG 8K

// FOR
*#10CS(1132 PRINTERSPLOTTER)
#ONE WORD INTEGERS
#LIST SOURCE PROGRAM
DIMENSION WR(256) swI(256)95(256)
COMMON XR{256)¢X1(256)
EQUIVALENCE(XI(1)+S(1))
NLOG=8
NTOT=256
Q=100
NPPC=4
BWz{(le/Q)%100.
CALL DOP(BW)
WRITE(3s75INPPC

75 FORMAT(' NPPC='315)
WRITE(3+81;

81 FORMAT (! N Vet DOPPLER ')
CALL KAY(NPPCsNTOT9Q)
XMAX=XR(1)

DO304N=24NTOT
IF{XMAX=XR{N))30593059304
305 xXMAX=XR(N)
304 CONTINUE
DO 11 N=1sNTOT
XRIN}=XR(N]/XMAX
NZF={N=1)
WRITE(39T2INZXR(N)

72 FORMAT(I535X0F12e4)
AVZ=N2Z
AVAL=XR{N)+7¢75
CALL FPLOT(2sAVZsAVAL)

11 CONTINUE
CALL POW
CALL FPLOT(=290s900)

C IN=PLACE FFT ALGORITHM REQUIRING BIT=REVERSAL
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TWOP[=6+2831853
AA=NTOT
AB=TWOPI/AA
D022 N=1sNTOT
AC=N=14
AD=AB®AC
WRI(N)=COS{AD)

22 WIIN)==SIN(AD)
J=NTOT/2
DO 35 M=1sNLOG
JA=J
IA=NLOG=M
IDIvV=2*%x]A
DO 34 N=1sNTOT
[ARG=(N=1}/1D1V
I=INREV(IARGINLOG)+1
IF(N=UA)Y31931932

31 NJ1I=N+J ,
XRIN}=mXRIN)+WR{T)®XRINJI)=WI(II*XI(NJ1)
XTINY=EXT{N)+WRIT)®XI{(NJLII+WI(I ) *XRINJL)
GO TO 34 :

32 NJ2=N=J
XAN=XR (N}
XRINI=XRINJIZ2) +2e % (WRITI®XRIN)=WI (I IH*XTIN))
XIIN)=XTINJ2)+2e ¥ {WR{TI®RXI(N)+WI (1) ®XAN)
IF(N=U=JA) 34933433

33 JAzJA+2%)

34 CONTINUE
J=J/2

35 CONTINUE
WRITE(39100)

100 FORMAT(' N SPECTRUM!)
DO 40 N=1sNTOT
XRINIBXR{N) %##24+X] (N)#*#%2

40 CONTINUE
DO 73 N=1sNTOT
NA=N=-1
NB=INREVINASNLOG) +1
S{N)Y=XR(NB)

C END OF IN=PLACE FFT ALGORITHM

NCB=N=1
WRITE(39101)INCB#S(N)
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101 FORMAT (2X91595%X9F12e4)
73 CONTINUE
NN=NTOT/2
AMAX=S51(1)
DO 155 N=29NN
IF(AMAX=S(N)})15491549155
154 AMAX=S(N)
155 CONTINUE
WRITE(39156)AMAX
156 FORMAT (3Xs 'AMAX=! 3F1244)
DO 157 N=1sNN
SIN)=S(N)/AMAX
CUN=N=]
CALL FPLOT(1sCUN9Qo)
CALL FPLOT{+2sCUNSS(N))
CALL FPLOT(OsCUN9Os)
157 CONTINUE
TTT=0e0
DOS0OON=13s128
500 TTT= SIN)+TTT
DO501N=1,128
501 SIN)=S(N)/TTT
XMEAN=Q0
DO502N=1+128
502 XMEAN=N*S(N)+XMEAN
VARX=0,0
DOS503N=14+128
503 VARX=VARX+( (N=XMEAN)*#%2)% S(N}
VARX=VARX*%* 45
XMEAN=XMEAN=1
CALL ABLE(XMEAN)
CALL FPLOT(19200e9=140)
WRITE(39504)NPPCsQesXMEANSVARX
504 FORMAT(3Xs'NPPC=! 3 15910Xs'Q="'9F 124 910X 'MEANZ' sF1244slUXs'SIGMAY,
1F12e4)
CALL EXIT
END

FEATURES SUPPORTED
ONE WORD INTEGERS
10CS

CORE REQUIREMENTS FOR
COMMON 1024 VARIABLES 1080 PROGRAM 944
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Appendix C

Fast Fourier Transform Algorithm with
Natural Input-Output for Data

PAGE 001

C NATURAL INPUT=QUTPUT FFT ALGORITHM

TWOP1=6+2831853
AA=NTOT
ARG=TWOPI/AA
NLH=NTOT/2
J=NLH
DO40 M=1sNLOG
1A=0
18=J
WR=COS(1A*ARG)
WI==SIN(IA®ARG)
D022 N=1sNLH
JIM=N+TA
KIM=N+1IB
YRIN)®=XR{JIM) +WR*XR(KIM)=W]I%XI (KIM)
YI(N)=XT(JIM)+WwREXT(KIM)+WI*¥XR(KIM)
IFIN=IB)22921s21

21 lAslA+J
I18=]1B+J
WR=COS({IA*ARG)
wi==SIN({IA*ARG)

22 CONTINUE
IA=NLH
[B=NLH=J
1€C=0
ID=NLH+J
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WR=COS (IC*ARG)
WIi==SIN{IC*ARG)
NL1=NLH+1
DO32N=NL1sNTOT
LIM=N=-1A
NIM=N=1IB
YRIN)=XRILIM} =WR®*XRINIM)+WI*XI (NIM)
YI(NY=XT({LIM)=WR*XT(NIM)=WI*XR(NIM)
IF(N=ID)32931531

31 JA=]A=J
18=1B=J
1C=1C+J
ID=1D+J
WR=COS (IC*ARG)
Wle=SIN(IC*ARG)

32 CONTINUE
DO38N=1sNTOT
XRIN)=YR(N)

38 XI(N)=YI(N)}
JeJ/2

40 CONTINUE
DO 73 N=1sNLH
SIN)=XRINI##24+XT (N) *%2

73 CONTINUE

C END OF NATURAL INPUT=CUTPUT FFT ALGORITHM

94



x(t) e(t) Loop 3(1—.)
Filter »
(a) v(t)
vVCO

H(s) D(s)

(23] ¥
B

L 4

(b)

m|y

D(s) %’Q H(s) |_D(s)

()
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DOPPLER RETURN
(BW= 0:00 PERCENT)
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Fig. 7. Spectral analysis of sinusoid with 16 points
per cycle.
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DOPPLER RETURN
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Fig. 8. Spectral analysis of sinusoid with 8 points
per cycle.
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Fig. 9. Spectral analysis of sinusoid with 4 points

per cycle.
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Fig. 10. Spectral analysis of sinusoid with 20 points
per cycle.
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Fig. 11. Spectral analysis of sinusoid with 10 points
per cycle.
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Fig. Spectral analysis of sinusoid with 5 points

per cycle.
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Fig. 13. Spectral analysis of Doppler return with
BW=20% and 8 points per cycle at band-center.

105



1-0 4

0-S 1

0-0

DOPPLER RETURN
(BW= 10 PERCENT)

+

1 ﬂ ﬂ
f //L PUﬂ\fh v j/\vhvnvf Wg’ i

1-0 4

0-8 1

0-6 |
0'4 4

0-2

e b - | - il -1 o e, 4 . A A___. .. &
L} L] L T ¥ L8 T

2 B4 95 128 160 182 224 = =6

TIME INTEGER

POWER SPECTRUM
(MEAN= 35.52)

0-0

i 4 .||| ||I|||’ |"I" ‘Illllnlll.l_l‘_'_". I: TR } f -+
48 B4

80 % 112 198

FREQUENCY INTEGER

165 3

Fig. 14. Spectral analysis of Doppler return with
BW=10% and 8 points per cycle at band-center.
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Fig. 15. Spectral analysis of Doppler return with

BW=5% and 8 points per cycle at band-center.
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Fig. 16. Spectral analysis of Doppler return with
BW=2% and 8 points per cycle at band-center.

108



1.0

0.5

0-0

-0-5 1

-1-0 4

1.0 L
0.8 {
0-6 |
0-4 {

O'E -+

0:0

DOPPLER RETURN
(BW= 1 PERCENT)

l MMM(\M\AJ\I\]\(\MAMAM\,\A

L AUARL LA

&

- N -y -4 1
v % L T T

" 3@ B4 96 1°8 180 132  o=r4 55

TIME INTEGER

POWER SPECTRUM
(MEAN= 32.4D

allls, o " ST SR ¥ L 1 1 1 N L a
Ll T T LN L L] L)

T = a8 | ea | w0 % 112 i
FREQUENCY INTEGER

Fig. 17. Spectral analysis of Doppler return with
BW=1% and 8 points per cycle at band-center.
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Fig. 18. Spectral analysis of Doppler return with
BW=20% and 4 points per cycle at band-center.
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Spectral analysis of Doppler return with
BW=10% and 4 points per cycle at band-center.
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Fig. 20. Spectral analysis of Doppler return with
BW=5% and 4 points per cycle at band-center.
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Fig. 21. Spectral analysis of Doppler return with
BW=2% and 4 points per cycle at band-center.
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Fig. 22. Spectral analysis of Doppler return with
BW=1% and 4 points per cycle at band-center.
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